Identifying and Understanding the Risk of Acoustic-Induced Vibration Failures

  • Home
  • Identifying and Understanding the Risk of Acoustic-Induced Vibration Failures

Identifying and Understanding the Risk of Acoustic-Induced Vibration Failures

Authors: Nathan D. Libertowski, Engineer II; Michael F.P. Bifano, Ph.D., P.E., Consulting Engineer I

Note: The following article was published in the March/April 2021 issue of the Inspectioneering Journal. Please submit the form below to access the full article. 

One source suggests that 10-15% of piping failures are a result of fatigue from vibration. Piping vibration can be caused by multiple different mechanisms such as flow-induced turbulence, slug flow, mechanical excitation from machinery, and acoustic pulsation. These mechanisms are often observed by plant operators since they present themselves during normal operation. On the other hand, acoustic-induced vibration (AIV) in pressure relief lines and downstream of control valves used for blow-down (BDV) is difficult to identify since the vibration is not readily observable unless the valves are opened. 

Often downstream of a pressure-reducing device (PRD), AIV occurs in gas systems when acoustic waves generated at flow restrictions excite natural modes of the piping, thus leading to vibration. AIV is different from most types of piping vibration because it generally occurs at much higher frequencies (300-1,500 Hz) and is the result of shell mode excitation. For this reason, AIV is typically not visible to the human eye but is noticeable by touch and transmits high-frequency audible noise outside the piping to the surrounding areas. The occasionality, combined with the high-frequency, low-amplitude vibration, allows AIV to usually go unnoticed until the vibration is heard, the pipe is touched, or a failure occurs. 

To continue reading the article, submit the form below:

Newsletter Archive

Access all of our previously published Industry Insights Newsletter articles:

Recently Published

API Inspection & Mechanical Integrity Summit

We are looking forward to seeing you at the upcoming API Inspection and Mechanical Integrity Summit in San Antonio! Our team is hosting eight training courses covering topics related to fitness-for-service (FFS), suitability-for-service (SFS), aboveground storage tanks (ASTs), brittle fracture, piping vibration, and pressure relief devices (PRDs). Earn valuable CPD hours and sign-up for a course today!

Read More »

Let E2G’s SMEs Train Your Future SMEs!

Knowing the fundamentals of industry programs, codes and standards, and technology will prepare new engineers for long-term success. At E2G, we have developed a new training course that supports knowledge transfer between industry experts and junior engineers, plus fills the gap for those companies without a formal training program. This article expands upon the June 16th webinar in which Mark Harmody introduced the curriculum for the Fundamentals of Asset Lifecycle Management course (FALCM).

Read More »

Educating the Next Generation – Training SMEs

Authors: Mark Harmody; Joel Andreani

With baby boomers making up the largest portion of today’s workforce, it’s time to implement a corporate knowledge-sharing program. E2G has developed a training program for our engineers and clients that is devoted to mechanical integrity programs and centered around our life-cycle management philosophy. In this article, Mark Harmody discusses the curriculum and how we apply the program at E2G.

Read More »

Updates to ASCE 7 and the Impact on Equipment Standards

The recent changes made to ASCE 7 will have a trickle-down impact on API and ASME codes, plus the International Building Code (IBC). In this article, Derek Slovenec and Joel Andreani discuss the most significant load changes (seismic, wind, tornado, snow, and rain) and the potential impact on ASME and API standards that reference ASCE 7.

Read More »
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Industry Insights Newsletter Articles
Library Items